
A New Dynamic Programming Algorithm for 
Single Item Capacitated DynamicLot Size 
Model* 

the 

H S I N - D E R  C H E N ,  D O N A L D  W. H E A R N ,  and C H U N G - Y E E  L E E  
Industrial and Systems Engineering Department, University of Florida, Gainesville, Florida 32611, 
U.S.A. 

(Received: 8 September 1992; accepted: 24 March 1993) 

Abstract. We develop a new dynamic programming method for the single item capacitated dynamic 
lot size model with non-negative demands and no backlogging. This approach builds the optimal value 
function in piecewise linear segments. It works very well on the test problems, requiring less than 0.3 
seconds to solve problems with 48 periods on a VAX 8600. Problems with the time horizon up to 768 
periods are solved. Empirically, the computing effort increases only at a quadratic rate relative to the 
number of periods in the time horizon. 

Key words. Capacitated lot size model, dynamic programming, production planning. 

1. Introduction 

The single item capacitated dynamic lot size model (CLSM) can be described as 
follows. For a finite time horizon T, there is demand for a single item in each 
production period. This demand must be satisfied by the production in that period 
or by inventory from previous periods, that is, no backlogging is allowed. The 
production level cannot exceed a certain capacity limit. Two kinds of costs are 
considered, production cost and holding cost. All the data, demands and 
capacities, as well as cost functions may differ from period to period. Assume that 
all data are non-negative and cost functions are non-decreasing. We are trying to 
find a feasible production plan with the total cost as small as possible. 

This model was first studied by Wagner and Whitin (1958). They assumed that 
there is infinite capacity at each period and provided an O(T 2) dynamic 
programming method. Since then, this uncapacitated model and its variations 
have been extensively studied by many researchers. We cite Veinott (1968), 
Zangwill (1966), Love (1973), Johnson and Montgomery (1974), Swoveland 
(1975), Florian et al. (1980) and Silver and Peterson (1985). Recently, Wagelmans 
et al. (1992), Federgruen and Tzur (1991), as well as Aggarwal and Park (1990) 
have independently provided algorithms to solve the problem in O(T log T) effort 
for the general problems and in O(T)  effort for problems with special cost 
structure. 

* This research was supported in part by NSF grants DDM-8814075 and DMC-8504786. 

Journal of Global Optimization 4: 285-300, 1994. 
Q 1994 Kluwer Academic Publishers. Printed in the Netherlands. 



286 HSIN-DER CHEN ET AL. 

The computational complexity of the CLSM has been investigated by Florian et 
al. (1980) and later by Bitran and Yanasse (1982). They showed that the CLSM is 
NP-hard even in many special cases. Therefore, one avenue of research has been 
to define some special cases and find polynomial algorithms for those cases. The 
notation a//3/3'/& which was introduced by Bitran and Yanasse (1982), where a, 
/3, 3' and 6 represent set up cost, holding cost, production cost and capacity type 
respectively, describes families of the CLSM. The values of these parameters may 
be G, C, ND, NI  and Z for arbitrary pattern, constant, non-decreasing, non- 
increasing and zero. Florian and Klein (1971) gave an O(T 4) algorithm for 
G/G/G/C .  Jagannathan and Rao (1973) extended this result to a general 
(in-period) cost function, neither concave nor convex. Swoveland (1975) adapted 
Florian and Klein's algorithm for piecewise concave cost functions. Love (1973) 
solved the same model with constant inventory capacity instead of production 
capacity in O(T3). Bitran and Yanasse showed that the time complexity of 
N I / G / N I / N D ,  NI /G/NI /C ,  C / Z / C / G  and N D / Z / N D / N I  are  O(T4) ,  O(T3), 
O(T log T) and O(T).  Chung and Lin (1988) improved the time complexity of 
N I / G / N I / N D  to O(T2). 

For the general CLSM, Florian et al. (1980) suggested a pseudo-polynomial 
time dynamic programming approach with complexity O(DrCr),  where D r is the 
total demand and C r is the total capacity. Baker et al. (1978) provided a 
tree-search solution algorithm for the G / G / C / G  cases. For problems with G / G /  
G/G,  there are two papers, by Lambrecht and Vander Eechen (1978) and by 
Kirca (1990). The former implemented the optimal property from Florian and 
Klein (1971) and designed a dynamic programming method. The latter refined the 
idea of pseudo-polynomial time dynamic program. Chung et al. (1990) provided 
an algorithm which combines dynamic programming and branch-and-bound. This 
algorithm works only for the special case without speculative motive for carrying 
inventory, that is, where the unit production cost increases no more than the cost 
of carrying a unit of inventory in each period. 

Finally, the approach of defining facet cuts for the dynamic lot size model has 
been investigate~d by Barany et al. (1984a,b), Leung et al. (1989), and Pochet and 
Wolsey (1991). 

This paper refines the pseudo-polynomial time dynamic programming approach 
by a geometric argument. The geometric argument to solve the uncapacitated 
dynamic lot size model has been used by Wagelmans et al. (1992) and by Chen 
and Lee (1991). Our work was motivated by these two papers. Although the 
result is an exponential time algorithm theoretically, it runs very well on test 
problems. In our computational experiments, it took only about 40 seconds on 
average to solve the CLSM with a time horizon up to 768 periods. 

This paper is organized as follows. Section 2 gives the notation and formula- 
tions for the capacitated single item dynamic lot size model. Section 3 introduces 
our approach, Section 4 gives the algorithm and a numerical example, and Section 
5 contains the computational experience. 



A N E W  D Y N A M I C  P R O G R A M M I N G  A L G O R I T H M  287 

2. Notation and Formulation 

We need the following notation to describe the single item capacitated dynamic 
lot size model: 

d t 

Ct 
X, 
11, 
p,(xt) 
tr 
p; 
h; 
D, 
c, 

= demand in period t. 
= production capacity in period t, where c t >10. 

= production level in period t, where 0 <~ x, ~< c,. 
= inventory level at the end of period t. 
= function of production cost in period t. 
= set-up cost in period t. 
= unit production cost in period t. 
= unit holding cost in period t. 

= accumulated demand, that is, D t = ~i_1 di.  
= accumulated capacity, that is, C, = r.i=l c~. 

Without loss of generality, we may assume that I 0 = 0. The CLSM can be 
formulated as follows. 

T 

Minimize ~] p~(x,) + h;I,  
t = l  

subject to I,_ l + x , = d , + I t ,  t = l , . . . , T  ( la)  

x t~<c, , t =  1 , . . . ,  T ( lb)  

I o = O, ( lc)  

x , , I , / > 0 ,  t = 1 , . . . ,  T ( ld )  

where 

0 if x, = O, 

P ' (Xt)= K t + p ~ x  , i f 0 < x , .  

Substituting for the inventory variables /~ = E l =  1 x i - 2 1 =  1 d i and redefining 
p,(x,) ,  the above model can be rewritten as 

T T 

Minimize ~] pt(x,) - ~ h ; D  t 
t = l  t = l  

subject t o 2 x / / > D , ,  t = l , . . . , T  
i = l  

x t ~ O ,  t = l , . . . , T  

(2a) 

(2b) 

where 

p,(x,)= + p; 

if xt = 0 ,  

+ ~ h i x, i f 0 < x , < ~ c  t ,  (3) 
i=t 

otherwise.  



288 HSIN-DER CHEN ET AL. 

The above simplification shows that a CLSM model with linear holding costs 
can easily be transformed into an equivalent model with no holding cost. For 
notational convenience, we assume that h~ = 0 for all t in the following discussion. 

3. A Continuous Dynamic Programming Approach 

For t/> 1, we define the optimal value function to be 

minimum cost of producing 
X = xa + �9 �9 �9 + x, units and 

F,(X) / t h r o u g h t  of (2a)and (2b) 
= ~satisfying constraints 1 for X E R, 

for X ~f  R, 

(4) 

where 

R, = {X[ D,<~X<-minfC,,DT}} ; (5) 

and let 

F0(X) = {O i f X = 0  
if X > 0 '  (6) 

R o =  {0}. (7) 

The optimal value function is then defined recursively as 

F~(X) = min {Ft_l(Y ) - ~ - p t ( X -  Y)} (S) 
Y@Rt_ 1 

X-ct~Y~X 

for t >i 1 and X E R t . Then the optimal value of the objective function is 

Z* = F r ( D T ) .  (9) 

The conventional interpretation for (8) is as follows. Given an X E R,,  F,(X) is 
the minimal value of Ft_l(Y)  + p t (X  - Y )  for all Y ~ Rt_ I f3 {Y [ X - c t ~< Y ~ X}. 
Typically X and Y are treated as discrete variables, and this approach implies the 
storing of tabular data at each stage of the dynamic program to solve for Fr(DT). 

Here  we treat X and Y as continuous variables. Hence Ft(X ) and Pt(Y, X)  are 
functions of these continuous variables, where 

P ' ( Y ' X ) = {  F ' -~ (T )+p t (X -  Y) ifY<~X<~ Y (10) 

for Y E R t _ I ,  X E R  t and t = 1 , . . . ,  T. Then (8) can be rewritten as 



A NEW DYNAMIC PROGRAMMING ALGORITHM 289 

F t (X) =  min { P t ( Y , X ) } .  (11) 
Y C R t -  1 

Note  that the restriction, X - c t ~< Y ~< X, for Y in (8) is moved to the definition 
of Pt(Y, X) .  Now the constraint on Y in (11) is independent  of X. In our 
approach,  (11) is interpreted as 

"Find all of the P,(Y, X )  for every X E  Rt_l, then Ft(X ) is the lower 
envelope of all the P,(Y, X )  functions." 

One difficulty is left. Since Y is a continuous variable, there will be an infinite 
number  of Y as well as p , ( Y , X ) .  Fortunately, if F,_a is a piecewise linear 
function, F~(X) can be found without computing all P,(Y, X )  over Y E R,_~. We 
will consider such Y in Rt_ ~ segment by segment instead of point by point. 

T H E O R E M  1. For any t = 1 , . . . ,  T, Ft(X ) is a non-decreasing piecewise linear 
function. 

This theorem will be proven by induction. It is easy to see that Fa(X) = P l ( S )  is a 
non-decreasing piecewise linear function. Now suppose F~_~(X) is non-decreasing 
and piecewise linear for some t > 1. F~(X) will be shown to be non-decreasing and 
piecewise linear in the remainder of this proof. 

Consider p,(x,) in (3) for some t. There are two segments ofp,(x~) if it is t reated 
as a piecewise linear function. When x t = 0, that is, X = Y, it is easy to verify that 

P t ( X , X ) = F t _ I ( X ) + p t ( O ) = F t _ , ( X  ) f o r X E R , ,  (12) 

and therefore (11) may be written as 

F,(X) = min{F,_~(X), min {P,(Y, X ) } } .  
Y ~ R t _ I , Y ~ X  

(13) 

Since Ft_I(Y ) is a piecewise linear function by assumption, suppose there are 
mr_ 1 segments of F~_I(Y ). Let 

R,_I = L_J Ri,-i f o r t  = 2 , . . . ,  T (14) 
l~i<~mt_ 1 

i 
where Rt_ 1 is the domain corresponding to the ith segment of Ft_l (Y  ) for 
1 <~ i <~ mr_ ~ . Then,  (13) can be rewritten as 

Ft(X ) = min(F,_l(X), min {/st(i , X ) ) ) ,  (15) 
l~i<-mt_ 1 

where 



290 HSIN-DER CHEN ET AL. 

cost 

pl 

r i  

ai bi bi-4-et 

Fig. 1. Lower envelope of F,_I(Y ) +p,(X- Y) (rj <-p',). 

X, Y 

/6,(i, X )  = min {P,(Y, X)}  for  i <~ i <~ t i l t _  1 . (16) 
YER~_ 1 , Y ~ X  

N o t e  tha t  if there  is a point  of  discontinuity in the domain  of Ft_~(Y ), it mus t  

be  left  con t inuous  at this point ,  since Ft_I(Y ) for  any t > 1 is a lower  enve lope  of  a 

set  o f  non-decreas ing  functions.  Le t  R~_ 1 = {Y I a, -< Y<-bl )  and RI_ 1 = { Y l a i  < 
Y ~ b i }  for  i > 1. D e n o t e  the slope of  Ft_~(Y ) in region RI_ ~ by ri. See Figures  1 

and  2. T h e  thin lines with the slope ofp~ in these figures are F,_I(Y ) + p t ( X -  Y) 
ove r  Y < X <<- Y + c, for  Y E RI_ ~. T h e  thick lines are the  lower  enve lopes  of  such 

thin lines. Be low are  the a lgebraic  express ions  for  these  lower  envelopes .  

Fo r  any t = 2 . . . . .  T, and for  any 1 ~< i ~ m,_ 1 , if r i ~<p~, then  

cost 

F~_~(Y)+p,(x-Y) 

p,(i,x) 

ai ai + c t  bi bi-l-ct 

Fig. 2. Lower envelope of F,_1(Y ) +p,(X- Y) (r i >p',). 

X, Y 



A NEW DYNAMIC PROGRAMMING ALGORITHM 291 

/5,(i, X)  = ~ Ft-I(X) + Kt 
[ Ft_l(bi) q- K t -[- p~ ( X -  b,) 

fora~ <X<~ bi 
(17) 

for bi < X <~b i + c t , 

otherwise, 

P t ( i , X  ) = ~Ft_l(ai) + g t + p ; ( S -  ai) 
[Ft_I(X-  c,) + K t + p;c, 

f o r a i < X < ~ a  i + c  t , 

for a i + c t < X ~ b i q- c t . 
(18) 

Note  that P,(i, X)  must also be defined on X E R t . In (17) and (18) it is implicit 
that X E R t . 

Since P~(i, X)  is non-decreasing and piecewise linear for any 1 ~< i ~<m,_ 1 as 
shown in (17) and (18) and F,_ I(X) is non-decreasing piecewise linear function by 
assumption, F~(X), which is computed from (15), must be piecewise linear and 
non-decreasing. This proves Theorem 1. 

4. Algorithm and Numerical Example 

This section provides a pseudocode statement of the algorithm and a detailed 
numerical example. The algorithmic statement is based on preliminary observa- 
tions regarding (17) and (18), and on a way to recover the optimal production 
plan after Fr (X ) is obtained. 

For any t = 1 , . . . ,  T, and for any 1 <~ i <~ mr_a, let 

/3~1)(i, X )  = 

/5}2)(i, X )  = 

/5}3)(i, X)  = 

/314)(i , X )  = 

Ft_l(S)-~- g t 

Ft_l(bi) q- g t + p ; ( X -  b~) 

Ft_l(ai) -1- g t + p; ( S -  ai) 

F t _ I ( X -  ct) + K t + p;c, 

f o r a i < S < ~ b  i 

for b~ < X ~< bz + c, 

f o r a  i < X <~ a~ + c t 

for a i + c t < S ~ b i -}- c t . 

These are segments o f / s t ( i ,X  ) in (17) and (18). For t~> 1, it is easy to see that 
P}a)(i, X ) =  Ft_I(X ) + K t > - F , _ I ( X  ). Then P}l)(i, X)  will not contribute to F~(X) 
according to (15). For any i >  1, since Ft(X ) is non-decreasing, /3}3)(i, X)  /> 
P ( 2 ) ( i - l ,  b i_ l )>~Ft(X)  for a i < X ~ a i + c  t (note that b i_ l=a~) .  Hence,  
P~3)(i, X)  will not contribute to F,(X)  when i >  1. Therefore, /5~(i, X)  can be 
simplified as follows. 

f/3}2)(i, X) 
/5,(i, X)  = {/5}3)(i, X)  U P}4)(i, X)  

(P}4)(i, X) 

if r i <<- p[ 
if ri > p[ and i = 1 

if r i > p[ and i > 1 

for any t t> 1 because this does not affect the recurrence in (15). 
For convenience, we refer to/st(i,  X)  as a product ion line of period t and refer 

to b i when r i <~p~ or a i when r i >p~ as the re-production po in t  of fit(i, X ) .  



292 HSIN-DER CHEN ET AL. 

In order to recover the optimal plan, we must keep the re-production points of 
each segment of the optimal value function for each period since they are used to 
determine the production level of the corresponding period. There are three 
possible production levels: (1) no production, (2) producing at full capacity, and 
(3) producing under capacity. To record these it is convenient to define another 
function, G,(X), from F,(X) as follows: if the segment containing X is from 
/5}2)(i, X) or p}3)(i, X) (producing under capacity), let G,(X) be equal to the 
corresponding re-production point; if that segment is from/5}4)(i, X) (producing 
at full capacity), let G,(X) be equal to a large positive value; otherwise, let Gt(X ) 
be equal to a negative value. Accordingly, in the algorithm statement, let 
G~(X) = - D  r if no production is necessary in period t, G,(X)=D r +c ,  if 
producing at full capacity, and Gt(X)=corresponding re-production point, 
otherwise. 

Since X is a continuous variable, we assume there is a procedure, lowerenv 
which determines the lower envelope of a collection of functions. In our computer 
program, this procedure determines the lower envelope of two functions only, the 
F,(X) and a/5}2)(i, X) like function (a line segment). That is, we split the domain 
of these functions into several intervals in which both functions are only a line 
segment and compute the lower envelope in each interval. We also assume there 
is a procedure findGt which gives G, as described above. Furthermore, F,(X) is 
implicitly infinite for XJg. R,, ]F,(X)] represents the number of segments in F,(X), 
and a segment of one point is assumed to have slope zero. 

CLSM ALGORITHM PSEUDOCODE 

(Initialization) 
Fo(X) <--O X E R o 
For t = l  to T d o  

(Updating Ft(X ) for X E R,) 
m,_I+--IF,_,(X)] 

X 
For i =m,_ 1 down to 1 do 

If r i ~<p~ then 
F,(X) ~ lowerenv(F,(X), p~2~(i, X)) 

else if i = 1 then 
F,(X) +-lowerenv(F,(X), /5}3)(i, X), p}4)(i, X)) 

else 
F,(X) ~- lowerenv(Ft(X), P}4)(i, X)) 

endif 
a , ( x )  ,-- f indat(F,(X)  ) 

enddo 
enddo 



A NEW DYNAMIC PROGRAMMING ALGORITHM 293 

(Recovery  of the optimal plan) 

Z*  ~---FT(DT) 

Y ~ - - D  T 
t ~ - - T  

repea t  

if G t ( Y  ) < 0 then 

x t ~-'--0 
y ~ - - y  

else if Gt(Y ) > D T then 

x t ~ G t (Y )  - D T 
Y ~ - ' - Y - x ,  

else 

x, ~ Y - G t (Y )  

Y ~-- G t (Y )  
endif 
t ~ - t - 1  

until Y = 0 

A NUMERICAL EXAMPLE 

t d t D t K, p; c, 

1 50 50 80 6 100 
2 30 80 80 4 50 
3 60 140 50 6 100 
4 40 180 50 4 50 

(initialization) 

Fo(X ) = 0 

t = l  

f o r X  = 0 

m0 IF0(X)[ = 1 

FI (X ) +--Fo(X ) = 0 f o r X =  0 

i = 1  (r 1 = 0 ~ p ' 1 = 6 )  

P~2)(1, X )  ~--80 + 6X for 50 < X ~  100 

F I ( X  ) <-- lowerenv(Fx(X ), P~2)(1, X))  = 80 + 6X 

G I ( X  ) *- - f indGt(Fl (X))  -- 0 for 50 ~ X ~< 100 

for 50 ~< X ~< 100 



294 HSIN-DER CHEN ET AL. 

t = 2  

m ,  ~--IFI(X)[ = 1 

F2(X ) r ) = 80 + 6X f o r 8 < X ~  < 100 

r 

i = 1 (r 1 = 6 > P2 = 4) 

P~3)(1, X )  *--260 + 4X for 50 < X ~< 100 

/3~4)(1, X )  <--60 + 6 X  for 100 < X ~< 150 

F2(X) ~lowerenv(F2(X ), P~3)(1, X) ,  P~4)(1, X)) 

I 8 0 + 6 X  f o r 8 0 ~ X ~ 9 0  
= 2 6 0 + 4 X  for 9 0 < X ~ 1 0 0  

k 6 0 + 6 X  for 1 0 0 < X ~ 1 5 0  

a 2 ( x )  *'--findGt(F2(X)) = ( -  180 for 80 ~< X ~< 90 50 for 90<X~<100  
230 for 100 < X ~< 150 

t = 3  

m2 <---IF=(x)l = 3 

F3(X ) *-F2(X ) = 60 + 6X for 1 4 0 ~ X ~  150 

i = 3  (r3 =6~<p3 = 6  ) 

/3~2)(3, X)( - -110 = 6X for 1 5 0 < X ~ 2 5 0  

F3(X) (-:lowerenv(F3(X),/3(2)t33 ~ , X ) ) =  { 110 + 6 X 6 0  + 6X 

-180  
G3(X) ~--findGt(F3(X)) = 150 

for 140 ~< X ~< 150 
for 150 < X ~< 250 

for 140 ~< X ~< 150 
for 150 < X ~< 250 

i = 2  (r 2 = 4 ~ < p ; = 6 )  

/3~2)(2, X )  <-- 110 + 6X for 100 < X <~ 200 

r3  1,6(2)*'2, X))  -- "( f 60 + 6X for 140 ~< X ~< 150 G(x) <-- loweFenv(F3(X)~ 110 + 6X for 150 < X ~< 250 

J - 1 8 0  for 140 ~ X ~< 150 
G3(X) *---findat(F3(X)) t 150 for 150 < X ~< 250 

t 

i = 1 (r I = 6 ~P3 = 6) 

/5~2)(1, X) <-- 130 + 6X for 90 < X ~ 190 

6 0 + 6 X  for 140~<X~<150 
F3(X) *--lowerenv(F2(X ),/3~2)(1, X))  = 110 + 6X for 150 < X ~< 250 

G3(X ) ~___findGt(F3(X)) = ~ ' -180 for 140 ~< X ~< 150 
L 150 for 150<X~<250 



A NEW DYNAMIC PROGRAMMING ALGORITHM 295 

t = 4  

m 3 ~-IF~(X)I  = 2 

F4(X ) <--- F3(X ) = 110 + 6X for 180 <~ X <~ 250 

i =  2 (r z = 6 > p 4 = 4 )  

15(44)(2, X) <--60 + 6X for  200 ~< X ~< 300 

. f l l 0  + 6X for  180 ~<X~< 200 
F4(X ) ~---lowerenv(Fa(X),/5(44)(2, X))  = I. 60 + 6X for  200 < X ~< 300 

G4(X ) ~.__findGt(F4(X)) = .1" - 1 8 0  for  180 ~< X ~< 200 
( 150 for  2 0 0 < X ~ < 3 0 0  

r 
i = l  (r 1 = 6 > p 4 = 4 )  

/5(43)(1, X )  +--390 + 4 X  for  140 < X ~< 190 

/3(44~(1, X )  * -  10 + 6X for 190 < X ~< 200 

F4(X ) <--lowerenv(F4(X), P~3)(1, X) ,  /514)(1, X))  

[ 3 9 0  + 4X for  180 ~< X ~< 190 
= ~  1 0 + 6 X  for  1 9 0 < X ~ < 2 0 0  

L 60 + 6 X  for  200 < X ~< 300 

( 1 4 0  
G4(X ) ~---firtdGt(F4(X)) = ~230 

( 1 5 0  

( R e c o v e r y  of  the opt imal  plan) 

Z* ~--F4(D4) = F4(180 ) = 1110 

Y ~ - - D  4 = 180 

t = 4  

Gt(Y)  = G4(180 ) = 140 < D r 

x 4 ~-- Y - G , (Y )  = 180 - 140 = 40 

Y~-- G , (Y )  = 140 

t = 3  

G,(Y) =G3(140 ) = -180  < 0 
<__ 

X 3 0 

[ Y'~-- Y = 140 

t = 2  

Gt(Y)  = G2(140 ) = 230 > D r 

x2--* G t (Y  ) - D r = 230 - 180 = 50 

Y~--- Y - x t = 140 - 50 = 90 

for  180 ~< X ~< 190 
for  190 < X <~ 200 
for 200 < X <~ 300 



296 H S I N - D E R  C H E N  E T  A L .  

t = l  

G,(Y) = G1(90 ) = 0 < D r 

x 1 *-- Y - G~(Y) = 90 - 0 = 90 

V ~-- G t ( Y  ) = 0 

The optimal plan is: 

I 
X = 90 

X 2 50  

x 3 0 

X 4 40. 

5. Computational Experience 

We have coded the dynamic programming algorithm given in the previous section. 
The storage of the data at each stage is accomplished by using (17) and (18). That 
is, we only keep the function parameters and the upper and lower bounds. This 
offers considerable savings over a standard dynamic programming approach. 

We used the same problem pattern as that in Baker et al. (1978) to test our 
algorithm. 

The demand pattern is given by 

dr=  200 + trzt + a sin [ - ~ - ( t  + b/4)]  (19) 

where 
o-= standard error of demand, 
z t = i.i.d, standard normal random variable, 
a = amplitude of the seasonality component, 
b - - length  of seasonal cycle in periods. 
Five problems were created in each of the following four combinations: (1) 

o ' = 6 7 ,  a = 0 ,  (2) o-=237, a = 0 ,  (3) t r=67 ,  a = 1 2 5 ,  b = T  and (4) o-=67,  
a = 1 2 5 ,  b = 1 2 .  

In the first run, unit production cost is zero for each period, p~ = 0; and unit 
holding cost is one, h~ = 1. Three different set up costs K are chosen, which are 
100, 900 and 3600. Three constant capacity levels C are selected, that is, 250, 700 
and 1200. We tested 6 time horizons, T = 24, 48, 96, 192, 384 and 768. These 
problems are C / C / C / C .  

After the first run, we created another set of problems with general capacity. 
Capacity c t is generated from an independent uniform distribution with range 
(0.5C, 1.5C) for each capacity category. These problems are C / C / C / G .  In 
addition, we generate Pt in the range of (4, 6), h t in the range of (0.5, 1.5) and K t 



A N E W  D Y N A M I C  P R O G R A M M I N G  A L G O R I T H M  297 

in the range of (0.5K, 1.5K) for each set up cost category. Thus, we have test 

problems with G/G/G/G. We only tested the case of T = 192 in the second run. 
A total of 1440 feasible problems were created and tested. The program of our 

algorithm is coded in Fortran and run on a VAX 8600. 
For any algorithm, the concern is both computing time and working space. In 

our algorithm, working space is in proportion to the total segment number of 
Gt(X) over all periods and/or the maximal number of segments of Ft(X ). As 
mentioned, we have to keep every Gt(X ) in order to recover the optimal 
production plan. 

The results of the first run are in Tables I, II and III. We do not have a 
comparison with results from the literature since no other algorithm has been 
used to solve problems of more than 24 periods with general capacity and cost 
structure. In these tables, we arrange results in the categories of set up cost, 
capacity and time horizon. Thus, each cell represents 20 problems. Table I 
contains CPU time, Table II contains the maximal segment number of Ft(X), and 
Table III contains the total segments number of G,(X). In each category, average 
performance is listed first with worst case performance in parentheses below. 

As the tables show, the algorithm is very effective. For example, within 0.3 
seconds, the code finds the optimal solution for the case of T = 48, which is a plan 
for a year with weekly lots. Even when the time horizon is 768, it needs less than 
3 minutes for the worst case out of 180 tests. Two more things should be 
mentioned. First, computing time increases only at a quadratic rate and storage 
space increases at a linear rate relative to T. Secondly, the performance of our 

Table I. CPUtime (seconds on a VAX8600) 

K C T =  24 T=  48 T=  96 T = 192 T=  384 T =  768 

100 250 0.02 a 0.08 0.32 1.15 4.71 19.05 
(0.03) b (0.10) (0.38) (1.35) (5.49) (22.24) 

700 0.01 0.05 0.17 0.73 3.05 12.37 
(0.03) (0.06) (0.21) (0.95) (3.90) (15.44) 

1200 0.01 0.03 0.12 0.46 1.82 7.15 
(0.02) (0.05) (0.16) (0.59) (2.32) (9.17) 

900 250 0.04 0.16 0.68 2.68 11.00 47.26 
(0.05) (0.23) (1.14) (3.86) (17.24) (71.74) 

700 0.03 0.12 0.46 1.89 7.87 32.71 
(0.04) (0.15) (0.51) (2.24) (8.93) (35.31) 

1200 0.01 0.06 0.21 0.88 3.57 15.04 
(0.02) (0.08) (0.24) (0.95) (3.84) (16.42) 

3600 250 0.04 0.19 1.04 5.19 26.16 99.65 
(0.06) (0.29) (2.11) (7.93) (46.26) (163.11) 

700 0.03 0.20 0.98 4.45 19.07 84.82 
(0.04) (0.27) (1.19) (5.07) (21.57) (95.57) 

1200 0.02 0.10 0.48 2.08 8.94 36.60 
(0.03) (0.13) (0.61) (2.39) (10.39) (40.92) 

a 

average; b worst case. 



298 HSIN-DER CHEN ET AL. 

Table II. Maximal segments of F,(X) over time hodzon 

K C T=24 T= 48 T= 96 T= 192 T= 384 T= 768 

100 250 19.5 a 32.3 62.2 115.2 223.9 447.6 
(25) b (39) (79) (147) (293) (554) 

700 12.4 20.0 36.7 68.4 135.6 264.1 
(18) (27) (50) (91) (174) (340) 

1200 9.4 13.6 23.4 41.8 80.8 155.9 
(12) (18) (30) (55) (105) (206) 

900 250 37.4 73.2 151.4 273.0 550.7 1134.2 
(53) (108) (273) (439) (977) (1924) 

700 23.4 49.8 92.4 180.4 363.3 713.0 
(32) (60) (112) (203) (409) (783) 

1200 14.1 25.5 44.9 86.2 166.6 329.4 
(18) (30) (51) (96) (191) (373) 

3600 250 40.8 94.1 249.9 566.6 1343.4 2894.4 
(59) (134) (520) (976) (2672) (5332) 

700 29.3 84.3 191.6 418.0 871.0 1805.8 
(38) (116) (257) (509) (1052) (2058) 

1200 17.8 44.7 101.3 205.3 428.7 840.9 
(27) (57) (140) (231) (487) (955) 

a 
b average; worst case. 

Table III. Total segments of G,(X) over time horizon 

K C T= 24 T= 48 T= 96 T= 192 T= 384 T= 768 

100 250 41.9 a 83.4 171.1 342.8 686.5 1376.2 
(46) b (88) (184) (351) (707) (1400) 

700 49.5 101.3 205.3 412.5 836.0 1666.5 
(54) (110) (222) (440) (888) (1778) 

1200 47.3 99.3 203.4 411.8 835.0 1667.9 
(54) (111) (219) (442) (891) (1786) 

900 250 47.4 95.3 199.9 400.1 801.0 1605.5 
(55) (107) (222) (425) (854) (1693) 

700 64.3 134.1 273.7 550.0 1108.2 2223.6 
(67) (139) (283) (571) (1146) (2287) 

1200 62.8 133.7 274.9 557.0 1122.6 2255.6 
(66) (138) (281) (570) (1144) (2291) 

3600 250 48.1 98.9 211.3 425.6 854.1 1719.9 
(56) (111) (234) (460) (924) (1840) 

700 64.6 136.4 278.8 562.3 1132.4 2272.4 
(67) (140) (283) (572) (1148) (2299) 

1200 62.0 134.6 278.1 564.3 1139.2 2290.3 
(66) (138) (281) (569) (1145) (2297) 

a average; b worst case. 

a l go r i t hm is ve ry  s table .  T h e  t ime  and  space  r e q u i r e m e n t  for  the  wors t  case  in 

each  ca t ego ry  is less than  twice tha t  of  the  ave rage  case.  

T h e  resul ts  o f  the  second  run  are  l is ted in T a b l e  IV. On ly  C P U  t ime  is 

p r o v i d e d .  T h e  p u r p o s e  of  the  second  run  is to show tha t  the  p a t t e r n  of  p r o b l e m s ,  

w h e t h e r  easy  o r  difficult ,  does  no t  affect  the  p e r f o r m a n c e  of  ou r  a lgor i thm.  This  is 



A NEW DYNAMIC PROGRAMMING ALGORITHM 299 

Table IV. CPU time (T = 192) 

K C C/C/C/C C/C/C/G G/G/G/G 

100 250 1.15 a 1.19 1.26 
(1.35) b (1.42) (1.51) 

700 0.73 0.81 0.89 
(0.95) (1.02) (1.09) 

1200 0.46 0.48 0.52 
(0.59) (0.60) (0.61) 

900 250 2.68 3.17 3.05 
(3.86) (5.14) (4.70) 

700 1.89 2.18 2.13 
(2.24) (2.42) (2.41) 

1200 0.88 0.97 0.99 
(0.95) (1.07) (1.16) 

3600 250 5.19 8.31 7.08 
(7.93) (14.76) (10.66) 

700 4.45 5.45 4.59 
(5.07) (6.35) (5.17) 

1200 2.08 2.38 2.04 
(2.39) (2.71) (2.54) 

a 

average; b worst case. 

i m p o r t a n t  because  our  approach does no t  requi re  special proper t ies  of capacities 

or of the  cost funct ions.  

The  c o m p u t e r  code used in our  exper iments  is available f rom the authors.  The  

d i s t r ibu t ion  disk includes  a code for genera t ion  of the test data.  

References 

Aggarwal, A. and J. K. Park (1990), Improved Algorithms for Economic Lot-Size Problem, Working 
paper, IBM Thomas J. Watson Research Center, Yorktown Heights, New York. 

Baker, K. R., P. Dixon, M. J. Magazine, and E. A. Silver (1978), An algorithm for the Dynamic 
Lot-Size Problem with Time-Varying Production Capacity Constraints, Management Science 24, 
1710-1720. 

Barany, I., T. Van Roy, and L. A. Wolsey (1984a), Uncapacitated Lot-Sizing: the Convex Hull of 
Solutions, Mathematical Programming Study 22, 32-43. 

Barany, I., T. Van Roy, and L. A. Wolsey (1984b), Strong Formulations for Multi-Item Capacitated 
Lot Sizing, Management Science 30, 1255-1261. 

Bitran, G. R. and H. H. Yanasse (1982), Computational Complexity of the Capacitated Lot Size 
Problem, Management Science 28, 1174-1186. 

Chen, H.-D. and C.-Y. Lee (1991), A Simple Algorithm for the Error Bound of the Dynamic LOt Size 
Model Allowing Speculative Motive, Research Report 91-5, Department of Industrial and Systems 
Engineering, University of Florida, Gainesville, Florida. (Revised for IIE Transactions.) 

Chung, C. S. and C. H. M. Lin (1988), An O(T 2) Algorithm for the NI/G/NI/ND Capacitated Lot 
Size Problem, Management Science 34, 420-426. 

Chung, C.-S., J. Flynn, and C.-H. M. Lin (1990), An Efficient Algorithm for the Capacitated Lot Size 
Problem, Working paper, College of Business Administration, Cleveland State University, Cleve- 
land, Ohio. 

Federgruen, A. and M. Tzur (1991), A Simple Forward Algorithm to Solve General Dynamic Lot 
Sizing Models with n Periods in O(n log n) or O(n) Time, Management Science 37, 909-925. 



300 HSIN-DER CHEN ET AL. 

Florian, M. and M. Klein (1971), Deterministic Production Planning with Concave Costs and Capacity 
Constraints, Management Science 18, 12-20. 

Florian, M., J. K. Lenstra, and A. H. G. (1980), Rinnooy Kan, Deterministic Production Planning 
Algorithm and Complexity, Management Science 26, 669-679. 

Jagannathan, R. and M. R. Rao (1973), A Class of Deterministic Production Planning Problems, 
Management Science 19, 1295-1300. 

Johnson, L. A. and D. C. Montgomery (1974), Operations Research in Production Planning, 
Scheduling, and Inventory Control, John Wiley and Sons, New York. 

Kirca, O. (1990), An Efficient Algorithm for the Capacitated Single Item Dynamic Lot Size Problem, 
European Journal of Operational Research 45, 15-24. 

Lambrecht M. and J. Vander Eechen (1978), A Capacity Constrainted Single-Facility Dynamic 
Lot-Size Model, European Journal of Operational Research 2, 132-136. 

Leung, J. M. Y., T. L. Magnanti, and R. Vachani (1989), Facets and Algorithms for Capacitated Lot 
Sizing, Mathematical Programming 45, 331-359. 

Love, S. F. (1973), Bounded Production and Inventory Models with Piecewise Concave Costs, 
Management Science 20, 313-318. 

Pochet, Y. and L. A. Wolsey (1991), Solving Multi-Item Lot-Sizing Problems Using Strong Cutting 
Planes, Management Science 37, 53-67. 

Silver, E. A. and R. Peterson (1985), Decision System for Inventory Management and Production 
Planning, John Wiley and Sons, Second Edition. 

Sandbothe, R. A. and G. L. Thompson (1990), A Forward Algorithm for the Capacitated Lot Size 
Model with Stockouts, Operations Research 38, 474-486. 

Swoveland, C. (1975), A Deterministic Multi-Period Production Planning Model with Piece-Wise 
Concave Production and Holding-Backorderer Costs, Management Science 21, 1007-1013. 

Veinott, A. F., Jr. (1968), Extreme Points of Leontief Substitution Systems, Linear Algebra 
Applications 1, 181-194. 

Wagelmans, A., S. Van Hoesel, and A. Kolen (1992), Economic Lot-Sizing: an O(n log n)-Algorithm 
that Runs in Linear Time in the Wagner-Whitin Case, Operations Research 40, S145-S156. 

Wagner, H. M. and T. M. Whitin (1958), Dynamic Version of the Economic Lot Size Model, 
Management Science 5, 89-96. 

Zangwill, W. (1966), A Deterministic Multi-Period Production Scheduling Model with Back-logging, 
Management Science 13, 105-119. 


